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PURELY TRANSVERSE WAVES IN ELASTIC ANISOTROPIC MEDIA

UDC 539.3: 517.958N. I. Ostrosablin

Formulas are obtained for decompositions of the third- and fourth-rank tensors symmetric in the last
two and three indices, respectively, into irreducible parts invariant relative to the orthogonal group
of coordinate transformation. The corresponding parts of the decompositions are orthogonal to each
other. These decompositions are used to obtain a general representation of the displacement vectors of
plane transverse waves in elastic isotropic and anisotropic solids. It is shown that the displacement
vectors of transverse waves are second-, third-, and fourth-degree homogeneous polynomials of the
wave normal. Special orthotropic materials are found that transmit purely transverse waves for any
direction of the wave normal. The eigenmoduli, eigenstates, and engineering constants (bulk moduli,
Young’s moduli, Poisson’s ratios, shear moduli, and Lamé constants of the closest isotropic materials)
are determined for these materials.

Key words: irreducible invariant decomposition, longitudinal and transverse waves, anisotropy,
elastic moduli, eigenmoduli, eigenstate.

This paper develops the approaches proposed in [1, 2]. Finding purely transverse waves and anisotropic
materials that transmit such waves is of fundamental importance in crystal physics and geophysics [3, 4].

Ignoring body forces, we write the equations of elasticity for arbitrary anisotropy in Cartesian coordinates
x1, x2, and x3:

Lijuj = 0, Lij = Lji = Ai(kl)j ∂kl − ρδij ∂44. (1)

Here uj is the displacement vector, Ai(kl)j = (Aiklj + Ailkj)/2, Aiklj = Akilj = Aljik is the elastic-modulus tensor,
ρ is the constant density of the material, ∂k is the derivative with respect to the coordinate xk, ∂4 is the derivative
with respect to time x4 = t, and δij is the Kronecker symbol. The summation is performed over repeated letter
indices, and the indices in parentheses denote symmetrization.

For an isotropic material, the operator (1) is written as

Lij = (λ + µ)∂ij + δij (µ∂kk − ρ ∂44), (2)

where λ and µ are the Lamé constants. If for operators (1) and (2) there exist differential operators T = [tjp],
D = diag (D1, D2, D3) and Di = a

(i)
kl ∂kl − ρ ∂44 with constant coefficients such that

LT = TD, |T | 6= 0, (3)

the general solution of Eqs. (1) is given by [5, 6]

u = Tϕ, Dϕ = f, Tf = 0. (4)

The formulas u = Tϕ, ϕ = T ′ũ, and Lũ = 0 transform the solutions of the equations Lu = 0 and Dϕ = 0 into one
another. The prime denotes the transpose of the matrix. The expression u = TT ′ũ is the formula producing new
solutions, i.e., Q = TT ′ is a symmetry operator [6, 7].

Relation (3) implies that tjp (p = 1, 2, 3) are eigenvectors and Di are eigenvalues (operators) for L. Replacing
∂k by nk (wave-normal vector) and ∂44 by v2 = vivi (vi = vni) and setting Di = 0, we reduce relation (3) to the
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Christoffel equation, from which the displacement vectors tjp and squared phase velocities of plane waves v2 are
determined [3].

We write (3) as

(Lij − δijD1)Tj1 = 0, (Lij − δijD2)Tj2 = 0, (Lij − δijD3)Tj3 = 0. (5)

Let D1 = akl ∂kl − ρ ∂44, akl = a(kl) and

Tj1 = γj + γjs ∂s + γj(pq) ∂pq + γj(pqr) ∂pqr + . . . . (6)

Similar expressions can be written for D2, D3, Tj2, and Tj3. From (5) and (6), we obtain

(Lij − δijD1)Tj1 = (Ai(kl)j − δijakl)∂klTj1

= (Ai(kl)j − δijakl)γj ∂kl + (Ai(kl)j − δijakl)γjs ∂kls

+(Ai(kl)j − δijakl)γj(pq) ∂klpq + (Ai(kl)j − δijakl)γj(pqr) ∂klpqr + . . . . (7)

Relations (5) hold if the symmetrized coefficients of ∂kl, ∂kls, ∂klpq, ∂klpqr, . . . in (7) vanish:

(Ai(kl)j − δijakl)γj = 0;

(1/3)[(Ai(kl)j − δijakl)γjs + (Ai(ks)j − δijaks)γjl + (Ai(ls)j − δijals)γjk] = 0; (8)

(1/6)[(Ai(kl)j − δijakl)γj(pq) + (Ai(kp)j − δijakp)γj(lq) + (Ai(kq)j − δijakq)γj(lp)

+ (Ai(lp)j − δijalp)γj(kq) + (Ai(lq)j − δijalq)γj(kp) + (Ai(pq)j − δijapq)γj(kl)] = 0; (9)

(1/10)[(Ai(kl)j − δijakl)γj(pqr) + (Ai(kp)j − δijakp)γj(lqr) + (Ai(kq)j − δijakq)γj(lpr)

+ (Ai(kr)j − δijakr)γj(lpq) + (Ai(lp)j − δijalp)γj(kqr) + (Ai(lq)j − δijalq)γj(kpr)

+ (Ai(lr)j − δijalr)γj(kpq) + (Ai(pq)j − δijapq)γj(klr) + (Ai(pr)j − δijapr)γj(klq) + (Ai(qr)j − δijaqr)γj(klp)] = 0, . . . .(10)

Setting the free indices in (8)–(10) equal to 1, 2, and 3, we obtain the corresponding system of equations for
unknowns Ai(kl)j − δijakl, γjs, γj(pq), γj(pqr), . . . . Systems of the form (8), (9) were considered in [6, 8].

It is obvious that for the operator (2), tj1 = ∂j is an eigenvector and determines purely longitudinal wave [3]
for any direction of the wave normal. In [4–6, 9], anisotropic materials were found that transmit purely longitudinal
waves for any direction of the wave normal. Given the propagation direction of transverse waves, one can completely
solve the Christoffel equation [3]. In [5, 6, 9], purely transverse waves were obtained:

tj2 = εjmscm ∂s, tj3 = cj ∂kk − cm ∂mj . (11)

Here εjms is a Levi-Civita antisymmetric tensor and cj is a nonzero vector. For tj2 in (11), we obtain the coefficients
γjs = εjmscm, and the elastic-constant tensor Aiklj of a transversely isotropic material with the rotation axis cj

satisfies Eqs. (8). If cj = (0, 0, 1), then tj2 = (−∂2, ∂1, 0) is a purely transverse wave that for any direction of the
wave normal nk (∂k) can travel in a transversely isotropic material [8] with the rotation axis x3; the phase velocity
in this case is ρv2 = (A11−A21)(n2

1 + n2
2)/2 + A44n

2
3/2. Here Aij is the elastic-modulus matrix that corresponds to

the tensor Aijkl. Obviously, the purely transverse waves (11) are also eigenvectors for the operator (2) in the case
of an isotropic material [8].

We find all transverse waves of the form ti2 = aijk ∂jk = ai(jk) ∂jk or ti2 = aijkl ∂jkl = ai(jkl) ∂jkl, where
aijk = ai(jk) and aijkl = ai(jkl) are tensors symmetric in the last two and three indices, respectively. These
vectors are orthogonal to ti1 = ∂i, i.e., the equalities ti1ti2 = aijk ∂ijk = a(ijk) ∂ijk = 0, and ti1ti2 = aijkl ∂ijkl

= a(ijkl) ∂ijkl = 0, should hold, from which it follows that a(ijk) = 0 and a(ijkl) = 0.
In a similar way as was done in [10], the tensors aijk and aijkl can be decomposed into invariant parts that

correspond to the irreducible linear representations of the orthogonal group of coordinate transformations:

aijk = ai(jk) = c
(1)
ijk + c

(2)
ijk + (εijlHlk + εiklHlj)/2 + Sijk,

(12)

c
(1)
ijk = a1giδjk + a2(gjδki + gkδji)/2, c

(2)
ijk = b1hiδjk + b2(hjδki + hkδji)/2;
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aijkl = ai(jkl) = aδi(jδkl) + Dijkl + Nijkl + gmεmi(jδkl) + dijkl + εmi(jSkl)m

= a(δijδkl + δikδlj + δilδjk)/3 + Dijkl + Nijkl + gm(εmijδkl + εmikδlj + εmilδjk)/3 + dijkl

+ (εmijSklm + εmikSljm + εmilSjkm)/3, (13)

Dijkl = α1(Hijδkl + Hikδlj + Hilδjk) + α2(Hjkδli + Hklδji + Hljδki)/3,

dijkl = β1(hijδkl + hikδlj + hilδjk) + β2(hjkδli + hklδji + hljδki)/3.

Here (a1, a2), (b1, b2) and (α1, α2), (β1, β2) are independent pairs of arbitrary real numbers, a is a constant, gi and
hi are vectors, Hij = H(ij) and hij = h(ij) are deviators: Hii = 0 and hii = 0, Sijk = S(ijk) is a septor (a symmetric
traceless tensor of rank three), and Nijkl = N(ijkl) is a nonor (symmetric traceless tensor of rank four). The free
parameters ai, bi, αi, and βi can be chosen such that all parts in (12) and (13) are orthogonal to one another. All
quantities on the right sides of (12) and (13) can be uniquely expressed in terms of the tensors ai(jk) and ai(jkl).
Conversely, these tensors can be specified by formulas (12) and (13).

The tensors c
(1)
ijk and c

(2)
ijk in (12) are normalized and orthogonal if [2]

a1 =
1√
3

(
ω11 −

1√
5

ω21

)
, a2 =

√
3
5

ω21; b1 =
1√
3

(
ω12 −

1√
5

ω22

)
, b2 =

√
3
5

ω22.

Here ωij is an arbitrary orthogonal 2 × 2 matrix of the second order: ωipωiq = δpq. The vectors, deviator, and
septor on the right side of (12) are uniquely determined by the tensor aijk [2]:

gi =
(b1 + 2b2)aikk − (3b1 + b2)assi

5(a1b2 − a2b1)
,

hi =
(3a1 + a2)assi − (a1 + 2a2)aikk

5(a1b2 − a2b1)
, a1b2 − a2b1 6= 0;

(14)

Hlk = (aijkεijl + aijlεijk)/3 = 2aij(kεl)ij/3, Sijk = a(ijk) − (a1 + a2)g(iδjk) − (b1 + b2)h(iδjk).

If the vector parts in (12) are orthogonal, instead of (14) we obtain

gi =
a1aikk + a2assi

(
√

3a1 + a2/
√

3)2 + 5a2
2/3

, hi =
b1aikk + b2assi

(
√

3b1 + b2/
√

3)2 + 5b2
2/3

.

Setting a1 = 1/3, a2 = 2/3, b1 = 2/3, and b2 = −2/3, from (12), we obtain the decomposition [11]

aijk = (giδjk + gjδki + gkδji)/3 + Sijk + (2hiδjk − hjδki − hkδji)/3 + (εijlHlk + εiklHlj)/2 (15)

into symmetric and nonsymmetric parts.
For transverse waves, the symmetric part in (15) is a(ijk) = 0, i.e., the tensor aijk becomes

aijk = (2hiδjk − hjδki − hkδji)/3 + (εijlHlk + εiklHlj)/2.

From this, we obtain the transverse wave (eigenvector)

tj2 = ajsk ∂sk = 2(hj∂kk − hk ∂kj)/3 + εjslHlk ∂sk = cj ∂kk − ck ∂kj + εjslHlk ∂sk,

cj = 2hj/3
(16)

and the third eigenvector

tj3 = εjmn ∂mtn2 = εjmncn ∂mss + Hlp ∂lpj −Hjp ∂pss.

One can easily verify that the matrix

T = [∂j , cj ∂kk − cm ∂mj + εjslHlp ∂sp, εjmncn ∂mss + Hlp ∂lpj −Hjp ∂pss] (17)

and the operator (2) satisfy relation (3) and D1 = (λ + 2µ) ∂kk − ρ ∂44 and D2 = D3 = µ∂kk − ρ ∂44. For a
nonzero deviator Hlk, the displacement vectors of the transverse waves tj2 and tj3 are second- and third-degree
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homogeneous polynomials of the wave normal nk (∂k). Taking into account (17) and using formulas (4), we obtain
a new representation [2] of the solution of the Lamé equation for an isotropic material.

We now consider the tensor aijkl = ai(jkl). A decomposition of the form (13) can be obtained using the
transformation

a∗
ijkl = a(jkl)i = (ajkli + aklji + aljki)/3.

We find the projectors

pijkl = αaijkl + β(ajkli + aklji + aljki)/3. (18)

Since the double action of the projector yields a projector, the coefficients in (18) satisfy the equations

3α2 + β2 = 3α, 6αβ + 2β2 = 3β,

whose solutions are (1, 0), (1/4, 3/4), and (3/4, −3/4). In this case, we obtain the following projectors: p
(2)
ijkl

= (aijkl +ajkli +aklji +aljki)/4 = a(ijkl) (symmetrization over all indices) and p
(3)
ijkl = (3aijkl−ajkli−aklji−aljki)/4

= aijkl − a(ijkl) (nonsymmetric part). These projectors are orthogonal p
(2)
ijklp

(3)
ijkl = 0 and their sum is equal to the

identical projector p
(1)
ijkl = aijkl.

From (13), we find the convolution of the tensors

Dijkldijkl = [15α1β1 + 2(α1β2 + α2β1) + 5α2β2/3]Hijhij (19)

and the squared norms of the tensors

DijklDijkl = (15α2
1 + 4α1α2 + 5α2

2/3)HijHij ,

dijkldijkl = (15β2
1 + 4β1β2 + 5β2

2/3)hijhij .
(20)

The tensors in (19) and (20) are orthogonal and normalized provided that

15α2
1 + 4α1α2 + 5α2

2/3 = (
√

15 α1 + 2α2/
√

15 )2 + (
√

7/5 α2)2 = 1,

15β2
1 + 4β1β2 + 5β2

2/3 = (
√

15β1 + 2β2/
√

15)2 + (
√

7/5 β2)2 = 1, (21)

15α1β1 + 2(α1β2 + α2β1) + 5α2β2/3 = (
√

15α1 + 2α2/
√

15)(
√

15β1 + 2β2/
√

15) +
√

7/5 α2

√
7/5 β2 = 0.

Relations (21) imply that [ √
15 α1 + 2α2/

√
15

√
15 β1 + 2β2/

√
15√

7/5 α2

√
7/5 β2

]
= ωij

is an arbitrary orthogonal 2× 2 matrix: ωipωiq = δpq. Moreover,

α1 =
1√
5

( 1√
3

ω11 −
2

3
√

7
ω21

)
, α2 =

√
5
7

ω21;

β1 =
1√
5

( 1√
3

ω12 −
2

3
√

7
ω22

)
, β2 =

√
5
7

ω22

(22)

and Dijkl and dijkl are normalized and orthogonal tensors.
The constant, vector, deviators, septor, and nonor on the right side of (13) are uniquely determined by the

tensor aijkl = ai(jkl):

a = aiikk/5, gs = 3εsijaijkk/10; Hij =
(5β1 + 2β2/3)pij − (2β1 + 5β2/3)qij

7(α2β1 − α1β2)
,

hij =
−(5α1 + 2α2/3)pij + (2α1 + 5α2/3)qij

7(α2β1 − α1β2)
,

(23)

α2β1 − α1β2 6= 0, pij = assij − asskkδij/3, qij = (aijkk + ajikk)/2− asskkδij/3;
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Skls = 3(aij(klεs)ij − δ(klεs)ijaijpp/5)/4 = [εsijaijkl + εkijaijls + εlijaijsk − (εsijδkl + εkijδls + εlijδsk)aijpp/5]/4,

Nijkl = a(ijkl) − aδi(jδkl) − (3α1 + α2)H(ijδkl) − (3β1 + β2)h(ijδkl).

For the parameters (22), the deviators (23) become

Hij = ω[−
√

5/7 ω12pij + (2ω12/
√

7 +
√

3 ω22)qij/
√

5],

hij = ω[
√

5/7 ω11pij − (2ω11/
√

7 +
√

3 ω21)qij/
√

5], ω = |ωij | = ω11ω22 − ω21ω12 = ±1.

For α1 = 1/6, α2 = 1/2, β1 = 1/6, and β2 = −1/2, from (13) we obtain the decomposition [11]

aijkl = ai(jkl) = a(δijδkl + δikδlj + δilδjk)/3 + Nijkl

+ (Hijδkl + Hikδlj + Hilδjk + Hjkδli + Hklδji + Hljδki)/6 + gm(εmijδkl + εmikδlj + εmilδjk)/3

+ (hijδkl + hikδlj + hilδjk − hjkδli − hklδji − hljδki)/6 + (εmijSklm + εmikSljm + εmilSjkm)/3, (24)

whose parts are orthogonal to one another.
For the transverse waves, the symmetric part in (24) is a(ijkl) = 0, i.e., the tensor aijkl has the form

aijkl = gm(εmijδkl + εmikδlj + εmilδjk)/3

+ (hijδkl + hikδlj + hilδjk − hjkδli − hklδji − hljδki)/6 + (εmijSklm + εmikSljm + εmilSjkm)/3. (25)

Taking into account (25), we obtain the transverse wave (eigenvector)

ti2 = aijkl∂jkl = gmεmij ∂jkk + (hij ∂jkk − hjk ∂ijk)/2 + εmijSklm ∂jkl

and third eigenvector

tj3 = εjsn ∂stn2 = gm ∂mjkk − gj ∂ppkk + εjslhlp ∂spkk/2 + Sklm ∂klmj − Sjkl ∂klpp.

One can readily verify that the matrix

T = [∂j , εmjngm ∂nkk + (hjp ∂pss − hlp ∂lpj)/2 + εjpmSmkl ∂pkl,

gm ∂mjkk − gj ∂ppkk + εjslhlp ∂spkk/2 + Sklm ∂klmj − Sjkl ∂klpp] (26)

and the operator (2) satisfy relation (3) for the same values of D1 and D2 = D3. For a nonzero septor Smkl,
the displacement vectors of transverse waves are third- and fourth-degree homogeneous polynomials of the wave
normal nk (∂k). Using formulas (4) and taking into account (26), one obtains one more representation of the
solution of the Lamé equations (2) for isotropic materials.

In [12, 13], a classification of the matrices L and T satisfying relation (3) is given and it is argued that degree
of the vectors tjp with respect to nk (∂k) is not higher than the second. However, the vector tj3 in the matrix (17)
is of the third degree if Hlp 6= 0 and the vectors tj2 and tj3 in (26) are of the third and fourth degrees, respectively,
if Smkl 6= 0. It follows that the classification given in [12, 13] is incomplete. For Hlp = 0, relation (17) yields (11),
and relation (26) yields (17) for Smkl = 0.

Let the coordinate system be the principal coordinate system for the deviator Hlk in (16), i.e., H21 = H31

= H32 = 0, H11 = H1, H22 = H2, H33 = H3, and H1 + H2 + H3 = 0. From (16), we obtain

t12 = c1(∂22 + ∂33) + (H3 −H2) ∂23 − c3 ∂13 − c2 ∂12,

t22 = c2(∂11 + ∂33)− c3 ∂23 + (H1 −H3) ∂13 − c1 ∂12, (27)

t32 = c3(∂11 + ∂22)− c2 ∂23 − c1 ∂13 + (H2 −H1) ∂12.

We consider the case cj = 0. Relation (27) becomes

tj2 = (h1 ∂23, h2 ∂13, h3 ∂12),

h1 = H3 −H2, h2 = H1 −H3, h3 = H2 −H1, h1 + h2 + h3 = 0.
(28)
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For the transverse wave (28), the coefficients γj(pq) are given by

γj(11) = 0, γj(22) = 0, γj(33) = 0,

γj(23) = (h1/2, 0, 0), γj(13) = (0, h2/2, 0), γj(12) = (0, 0, h3/2).
(29)

In view of (29), system (9) reduces to the equations

(A∗
11 − a)h1 + A∗

66h2 + A∗
55h3 = 0,

A∗
66h1 + (A∗

22 − a)h2 + A∗
44h3 = 0, A∗

55h1 + A∗
44h2 + (A∗

33 − a)h3 = 0.
(30)

Here a11 = a22 = a33 = a, a23 = a13 = a12 = 0, and A∗
ik is the matrix corresponding to the tensor Ai(kl)j [14].

From (30) it follows that a is an eigenvalue and hj is an eigenvector of the symmetric matrix

A∗
ij =

 A∗
11 A∗

66 A∗
55

A∗
66 A∗

22 A∗
44

A∗
55 A∗

44 A∗
33

 . (31)

Therefore, the matrix (31) can be written in terms of eigenvalues and eigenvectors:

A∗
ij = a1hi1hj1 + a2hi2hj2 + a3hi3hj3. (32)

Here hip is an orthogonal matrix [15]:

hip =



1√
3

−(1 + c)√
3[1 + (c− 1)2 + c2]

c− 1√
1 + (c− 1)2 + c2

1√
3

2− c√
3[1 + (c− 1)2 + c2]

−c√
1 + (c− 1)2 + c2

1√
3

2c− 1√
3[1 + (c− 1)2 + c2]

1√
1 + (c− 1)2 + c2


. (33)

Here c is an arbitrary real parameter, and, obviously, h1p + h2p + h3p = 0 for p = 2, 3.
In this case, the total matrix A∗

ik [14] has the form

A∗
ik =



A∗
11

a A∗
22 sym

a a A∗
33

0 0 0 A∗
44

0 0 0 0 A∗
55

0 0 0 0 0 A∗
66

 , (34)

where the diagonal elements are given by formulas (31)–(33) and the quantity a can take values a2 or a3. Taking
into account (34), we write the operator (1) as

Lij =


A∗

11∂11 + a(∂22 + ∂33)− ρ∂44 A∗
66∂12 A∗

55∂13

A∗
66∂21 a∂11 + A∗

22∂22 + a∂33 − ρ∂44 A∗
44∂23

A∗
55∂31 A∗

44∂32 a(∂11 + ∂22) + A∗
33∂33 − ρ∂44

 . (35)

One can easily verify that if Eqs. (30) are satisfied, the vector (28) is an eigenvector of the operator (35) and
D2 = a∂kk−ρ∂44. It is obvious that for any direction of the wave normal nk (∂k), the vector (28) is the displacement
vector of purely transverse wave and the phase velocity is given by ρv2 = a2nknk = a2 or ρv2 = a3nknk = a3,
depending on which column in (33) — hi2 or hi3 — is chosen for hi in (28).

Using (34), we find (see [14]) the elastic-modulus matrix Aij [1] in Hooke’s law

Aij =



A∗
11

A∗
66 − a A∗

22 sym
A∗

55 − a A∗
44 − a A∗

33

0 0 0 2a

0 0 0 0 2a

0 0 0 0 0 2a

 , (36)
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where a = a2 or a = a3. It should be noted that the operator (35) [hence, the material (36)] does not admit the
purely longitudinal wave tj1 = ∂j for any direction of the wave normal. This is possible for an isotropic material
with the operator (2) [see formulas (17) and (26)] and for the anisotropic material considered in [4–6, 9].

Since the quantity a in (36) can take two values a = a2 or a = a3, two types of materials correspond to
matrix (36). Obviously, these are subclasses of orthotropic materials.

Using formulas (30)–(33), one can show that the vectors hip (p = 1, 2, 3) in (33) are also eigenvectors for
the first quarter of the matrix (36). It follows that the materials (36) have eigenmoduli [15]

λ1 = a1 − 2a2, λ2 = 2a2, λ3 = a2 + a3, λ4 = λ5 = λ6 = 2a2 (37)

or

λ1 = a1 − 2a3, λ2 = a2 + a3, λ3 = λ4 = λ5 = λ6 = 2a3 (38)

and eigenstates [15]

tip =



1√
3

−(1 + c)√
3[1 + (c− 1)2 + c2]

c− 1√
1 + (c− 1)2 + c2

0 0 0

1√
3

2− c√
3[1 + (c− 1)2 + c2]

−c√
1 + (c− 1)2 + c2

0 0 0

1√
3

2c− 1√
3[1 + (c− 1)2 + c2]

1√
1 + (c− 1)2 + c2

0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


. (39)

From (39) it follows that among the eigenstates, there are a spherical tensor and five orthogonal deviators, three of
which are pure-shear tensors, i.e., deviators with zero determinants. For some values of c, however, there may be
four pure-shear tensors.

For the physically real materials (36), the eigenmoduli (37) and (38) should be positive. This implies the
following necessary and sufficient conditions of positive definiteness of the matrix (36)

a1 − 2a2 > 0, a2 + a3 > 0, a2 > 0;
(40)

a1 − 2a3 > 0, a2 + a3 > 0, a3 > 0.

By virtue of the multiplicity of the eigenmoduli (37) and (38), materials of the form (36) can be written as

Aij = (λ1 − λ2)ti1tj1 + (λ3 − λ2)ti3tj3 + λ2δij ;

Aij = (λ1 − λ3)ti1tj1 + (λ2 − λ3)ti2tj2 + λ3δij .
(41)

Here the eigenmoduli λ1, λ2, and λ3 are given by formulas (37) and (38), and the eigenstates ti1, ti2, and ti3 by
formulas (39). In (41), the moduli λ1, λ2, and λ3 are not ordered, i.e., they are numbered according to the notation
(37) and (38). Depending on the relations between the moduli λ1, λ2, and λ3, materials of the form (41) can belong
to the classes {1, 1, 4}, {1, 4, 1}, and {4, 1, 1} [16].

Thus, the anisotropic materials (41), which transmit purely transverse waves (28) for any direction of the
wave normal nk, depend on four parameters: a1, a2, a3, and c. The first three parameters satisfy inequalities (40),
and the parameter c, which determines the eigenstates (39), can take arbitrary real values. If a2 = a3 in (37) and
(38), materials of the form (36) and (41) become isotropic.

The compliance matrix aij inverse to Aij (41) is given by

aij =
( 1

λ1
− 1

λ2

)
ti1tj1 +

( 1
λ3

− 1
λ2

)
ti3tj3 +

1
λ2

δij ;

aij =
( 1

λ1
− 1

λ3

)
ti1tj1 +

( 1
λ2

− 1
λ3

)
ti2tj2 +

1
λ3

δij .

(42)
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Using (42), we find the engineering constants [17, 18] for these materials. The bulk modulus K is written as

1
K

= aiikk = tiipq
1

λpqrs
tkkrs =

1
λ1

t2ii11 +
1
λ2

t2ii22 +
1
λ3

t2ii33 +
1
λ4

2t2ii23 +
1
λ5

2t2ii13 +
1
λ6

2t2ii12. (43)

Here aijkl is the compliance-coefficient tensor corresponding to the matrix aij , tij11, . . . ,
√

2tij12 are the tensors of
the eigenstates that correspond to the columns ti1, . . . , ti6 in (39), and λpqrs is the diagonal tensor of the eigenmoduli.
Since tij11 = δij/

√
3 and tii11 =

√
3 and the remaining eigenstates are deviators, i.e., tiipq = 0 and pq 6= 11, from

(37), (38), and (43) we obtain 3K = λ1 = a1 − 2a2 or 3K = λ1 = a1 − 2a3.
Let ni and mi (i = 1, 2, 3) be two orthogonal directions: nini = 1, mimi = 1, and nimi = 0. We introduce

the notation

ñi = (n2
1, n2

2, n2
3,
√

2 n2n3,
√

2 n1n3,
√

2 n1n2),

m̃i = (m2
1, m2

2, m2
3,
√

2 m2m3,
√

2 m1m3,
√

2 m1m2), (44)

ñmi = (n1m1, n2m2, n3m3,
√

2(n2m3 + n3m2)/2,
√

2(n1m3 + n3m1)/2,
√

2(n1m2 + n2m1)/2),

i.e., (44) are vectors that correspond to the symmetric tensors ninj , mimj , and n(imj). Young’s modulus En in
the direction ni is written as

1
En

= ninjaijklnknl = ninjtijpq
1

λpqrs
tklrsnknl =

1
λ1

(tij11ninj)2 +
1
λ2

(tij22ninj)2 +
1
λ3

(tij33ninj)2

+
1
λ4

2(tij23ninj)2 +
1
λ5

2(tij13ninj)2 +
1
λ6

2(tij12ninj)2

= ñiaij ñj =
1
λ1

(ti1ñi)2 +
1
λ2

(ti2ñi)2 +
1
λ3

(ti3ñi)2 +
1
λ4

(ti4ñi)2 +
1
λ5

(ti5ñi)2 +
1
λ6

(ti6ñi)2. (45)

Taking into account (37)–(39), (42), and (44), from (45) we obtain

1
En

=
4a2 − a1

2a2(a1 − 2a2)
(ti1ñi)2 +

a2 − a3

2a2(a2 + a3)
(ti3ñi)2 +

1
2a2

=
a1 − a2

3a2(a1 − 2a2)
+

a2 − a3

2a2(a2 + a3)
[(c− 1)n2

1 − cn2
2 + n2

3]
2

1 + (c− 1)2 + c2
;

1
En

=
4a3 − a1

2a3(a1 − 2a3)
(ti1ñi)2 +

a3 − a2

2a3(a2 + a3)
(ti2ñi)2 +

1
2a3

=
a1 − a3

3a3(a1 − 2a3)
+

a3 − a2

2a3(a2 + a3)
[−(1 + c)n2

1 + (2− c)n2
2 + (2c− 1)n2

3]
2

3[1 + (c− 1)2 + c2]
.

For tension in the direction ni, Poisson’s ratio νmn in the direction mi has the form
νmn

En
= mimjaijklnknl = mimjtijpq

1
λpqrs

tklrsnknl

=
1
λ1

(tij11mimj)(tkl11nknl) +
1
λ2

(tij22mimj)(tkl22nknl) +
1
λ3

(tij33mimj)(tkl33nknl)

+
1
λ4

2(tij23mimj)(tkl23nknl) +
1
λ5

2(tij13mimj)(tkl13nknl) +
1
λ6

2(tij12mimj)(tkl12nknl)

= m̃iaij ñj =
1
λ1

(ti1m̃i)(tj1ñj) +
1
λ2

(ti2m̃i)(tj2ñj) +
1
λ3

(ti3m̃i)(tj3ñj)

+
1
λ4

(ti4m̃i)(tj4ñj) +
1
λ5

(ti5m̃i)(tj5ñj) +
1
λ6

(ti6m̃i)(tj6ñj). (46)
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With allowance for (37)–(39), (42), and (44), from (46) we obtain

νmn

En
=

4a2 − a1

2a2(a1 − 2a2)
(ti1m̃i)(tj1ñj) +

a2 − a3

2a2(a2 + a3)
(ti3m̃i)(tj3ñj)

=
4a2 − a1

6a2(a1 − 2a2)
+

a2 − a3

2a2(a2 + a3)
[(c− 1)m2

1 − cm2
2 + m2

3][(c− 1)n2
1 − cn2

2 + n2
3]

1 + (c− 1)2 + c2
;

νmn

En
=

4a3 − a1

2a3(a1 − 2a3)
(ti1m̃i)(tj1ñj) +

a3 − a2

2a3(a2 + a3)
(ti2m̃i)(tj2ñj)

=
4a3 − a1

6a3(a1 − 2a3)
+

a3 − a2

2a3(a2 + a3)
[−(1 + c)m2

1 + (2− c)m2
2 + (2c− 1)m2

3][−(1 + c)n2
1 + (2− c)n2

2 + (2c− 1)n2
3]

3[1 + (c− 1)2 + c2]
.

The shear modulus µnm in the plane determined by the normals ni and mi is given by

1
4µnm

= nimjaijklnkml = nimjtijpq
1

λpqrs
tklrsnkml

=
1
λ1

(tij11nimj)2 +
1
λ2

(tij22nimj)2 +
1
λ3

(tij33nimj)2

+
1
λ4

2(tij23nimj)2 +
1
λ5

2(tij13nimj)2 +
1
λ6

2(tij12nimj)2

= ñmiaij ñmj =
1
λ1

(ti1ñmi)2 +
1
λ2

(ti2ñmi)2 +
1
λ3

(ti3ñmi)2

+
1
λ4

(ti4ñmi)2 +
1
λ5

(ti5ñmi)2 +
1
λ6

(ti6ñmi)2. (47)

Taking into account (37)–(39), (42), and (44), from (47) we obtain

1
4µnm

=
4a2 − a1

2a2(a1 − 2a2)
(ti1ñmi)2 +

a2 − a3

2a2(a2 + a3)
(ti3ñmi)2 +

1
2a2

(ñmi)(ñmi)

=
1

4a2
+

a2 − a3

2a2(a2 + a3)
[(c− 1)n1m1 − cn2m2 + n3m3]2

1 + (c− 1)2 + c2
;

1
4µnm

=
4a3 − a1

2a3(a1 − 2a3)
(ti1ñmi)2 +

a3 − a2

2a3(a2 + a3)
(ti2ñmi)2 +

1
2a3

(ñmi)(ñmi)

=
1

4a3
+

a3 − a2

2a3(a2 + a3)
[−(1 + c)n1m1 + (2− c)n2m2 + (2c− 1)n3m3]2

3[1 + (c− 1)2 + c2]
.

Thus, all engineering constants of materials (36), (41), and (42) are determined in general form.
Matrices (36) and (41) can be decomposed into invariant irreducible parts using the formulas given in [10].

In particular, the Lamé constants of the isotropic materials the closest to (41) are given by

λ = (2Asskk −Askks)/15 = (5λ1 − 4λ2 − λ3)/15 = (5a1 − 19a2 − a3)/15,

2µ = (3Askks −Asskk)/15 = (4λ2 + λ3)/5 = (9a2 + a3)/5;

λ = (5λ1 − λ2 − 4λ3)/15 = (5a1 − a2 − 19a3)/15, 2µ = (λ2 + 4λ3)/5 = (a2 + 9a3)/5.
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Equations (30) admit one more solution if only one eigenvector in representation (32), say, hi3, satisfies the condition
h13 +h23 +h33 = 0. In this case, a = a3 in (36) and in the second formula (41) the eigenmoduli λ1 > 0, λ2 > 0, and
λ3 = λ4 = λ5 = λ6 = 2a3 > 0 are independent quantities, and the eigenstates tip have the following form [15]:

tip=



1√
1 + c2

3 + (1 + c1(c3 − 1))2
−[c3+(1+c1(c3 − 1))c1]√

[1+c2
3+(1+c1(c3 − 1))2][1+(c1 − 1)2+c2

1]
c1 − 1√

1 + (c1 − 1)2 + c2
1

0 0 0

c3√
1 + c2

3 + (1 + c1(c3 − 1))2
1− (1+c1(c3 − 1))(c1 − 1)√

[1+c2
3+(1+c1(c3 − 1))2][1+(c1 − 1)2+c2

1]
−c1√

1 + (c1 − 1)2 + c2
1

0 0 0

1 + c1(c3 − 1)√
1 + c2

3 + (1 + c1(c3 − 1))2
c3(c1 − 1)+c1√

[1+c2
3+(1+c1(c3 − 1))2][1+(c1 − 1)2+c2

1]
1√

1 + (c1 − 1)2 + c2
1

0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



.

(48)

Here c1 and c3 are arbitrary real parameters. It follows that, in this case, the anisotropic material (41) transmitting
the purely transverse wave (28) for any direction of the wave normal nk depends on five parameters: λ1, λ2, a3, c1,
and c3.

Using (36), (41), and (48), one can show that the matrix (31) has an eigenvector hi3 = ti3 (i = 1, 2, 3) and
an eigenvalue a3. The eigenvectors hi1 and hi2 in (32) have the structure of the vectors ti1 and ti2 (i = 1, 2, 3) in
(48) with a different parameter c3. There is no need to calculate the values of a1 and a2 in (32). For c3 = 1, the
matrix (48) becomes the matrix (39).

Formulas (43) and (45)–(47) are also used to calculate the engineering constants in the case of (41) and (48).
The Lamé constants of the closest isotropic material are as follows:

λ = [(λ1 − 2a3)(2t2kk11 − 1) + (λ2 − 2a3)(2t2kk22 − 1)]/15,

2µ = [(λ1 − 2a3)(3− t2kk11) + (λ2 − 2a3)(3− t2kk22)]/15 + 2a3.

In [4], the following anisotropic material transmitting purely transverse waves for any direction of the wave
normal is given as an example:

Aijkl = λδijδkl + µ(δikδjl + δilδjk) + Hijδkl + Hklδij = Ais
ijkl + Hijδkl + Hklδij . (49)

Here Ais
ijkl is the isotropic part and Hij = H(ij) is a deviator: Hii = 0. In the principal axes of the deviator Hij ,

the tensor (49) corresponds to the elastic-modulus matrix Aij

Aij =



λ + 2µ + 2H1

λ−H3 λ + 2µ + 2H2 sym
λ−H2 λ−H1 λ + 2µ + 2H3

0 0 0 2µ

0 0 0 0 2µ

0 0 0 0 0 2µ

 , (50)

H1 + H2 + H3 = 0.

The material (50) is a particular case of materials of the form (36), (41), and (48). For (50), the eigenmoduli
λp, eigenstates tip, and parameters c1 and c3 are given by

λ1 = 2µ + [3λ +
√

3(3λ2 + 4HiHi)]/2 = 2µ + λ̃1,

λ2 = 2µ + [3λ−
√

3(3λ2 + 4HiHi)]/2 = 2µ + λ̃2,

λ3 = λ4 = λ5 = λ6 = 2µ;
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tip =



H1 + λ̃1/3√
HsHs + λ̃2

1/3

H1 + λ̃2/3√
HsHs + λ̃2

2/3

H3 −H2√
3HsHs

0 0 0

H2 + λ̃1/3√
HsHs + λ̃2

1/3

H2 + λ̃2/3√
HsHs + λ̃2

2/3

H1 −H3√
3HsHs

0 0 0

H3 + λ̃1/3√
HsHs + λ̃2

1/3

H3 + λ̃2/3√
HsHs + λ̃2

2/3

H2 −H1√
3HsHs

0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



;

c1 =
H3 −H1

H2 −H1
, c3 =

H2 + λ̃1/3
H1 + λ̃1/3

.

The matrix (50) is positive definite if the following necessary and sufficient conditions are satisfied:

2µ(3λ + 2µ) > 3(H2
1 + H2

2 + H2
3 ), µ > 0.

It is of interest to find, in addition to materials of the form (36), (41), other anisotropic materials that admit
purely transverse waves, for example, when the wave displacement vector contains the septor Smkl [see (25) and
(26)]. For this, it is necessary to solve system (10) and study the properties of the septor. This is a subject for
further study.
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