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PURELY TRANSVERSE WAVES IN ELASTIC ANISOTROPIC MEDIA

N. I. Ostrosablin UDC 539.3: 517.958

Formulas are obtained for decompositions of the third- and fourth-rank tensors symmetric in the last
two and three indices, respectively, into irreducible parts invariant relative to the orthogonal group
of coordinate transformation. The corresponding parts of the decompositions are orthogonal to each
other. These decompositions are used to obtain a general representation of the displacement vectors of
plane transverse waves in elastic isotropic and anisotropic solids. It is shown that the displacement
vectors of transverse waves are second-, third-, and fourth-degree homogeneous polynomials of the
wave normal. Special orthotropic materials are found that transmit purely transverse waves for any
direction of the wave normal. The eigenmoduli, eigenstates, and engineering constants (bulk moduli,
Young’s moduli, Poisson’s ratios, shear moduli, and Lamé constants of the closest isotropic materials)
are determined for these materials.

Key words: irreducible invariant decomposition, longitudinal and transverse waves, anisotropy,
elastic moduli, eigenmoduli, eigenstate.

This paper develops the approaches proposed in [1, 2]. Finding purely transverse waves and anisotropic
materials that transmit such waves is of fundamental importance in crystal physics and geophysics [3, 4].
Ignoring body forces, we write the equations of elasticity for arbitrary anisotropy in Cartesian coordinates
1,29, and x3:
Lijuj == 0, Lij == le' == Ai(kl)j 8k.l - péu 344. (1)
Here u; is the displacement vector, A;i); = (Airtj + Airj)/2, Airij = Arij = Aijar is the elastic-modulus tensor,
p is the constant density of the material, J is the derivative with respect to the coordinate xy, d4 is the derivative
with respect to time x4 = t, and §;; is the Kronecker symbol. The summation is performed over repeated letter
indices, and the indices in parentheses denote symmetrization.
For an isotropic material, the operator (1) is written as
Lij = (A + )05 + 6ij (1 Okk — p Osa), (2)
where A and p are the Lamé constants. If for operators (1) and (2) there exist differential operators T = [¢;p],
D = diag (D, D2, D3) and D; = a,(fl) Okt — p 044 With constant coefficients such that
LT=TD, |T|£0, (3)
the general solution of Egs. (1) is given by [5, 6]
u=Typ, Dp=f  Tf=0. (4)

The formulas u = Ty, ¢ = T"@, and Lu = 0 transform the solutions of the equations Lu = 0 and Dy = 0 into one
another. The prime denotes the transpose of the matrix. The expression v = TT"# is the formula producing new
solutions, i.e., @ =TT’ is a symmetry operator [6, 7].

Relation (3) implies that t;, (p = 1,2,3) are eigenvectors and D; are eigenvalues (operators) for L. Replacing
Ok by ng (wave-normal vector) and 944 by v? = v;v; (v; = vn;) and setting D; = 0, we reduce relation (3) to the
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Christoffel equation, from which the displacement vectors ¢;, and squared phase velocities of plane waves v? are

determined [3].
We write (3) as

(L” — (Sszl)le = O, (Lz] — (Sing)TjQ = 0, (LU — (Sing,)Tjg =0. (5)
Let Dy = aj O — p Oua, ag = ary and

Tjn =5 +Yis Os + Vi(pa) Ipa + Vipar) Opar + -+ - (6)
Similar expressions can be written for Dy, D3, T2, and T;3. From (5) and (6), we obtain

(Lij = 6i3D1)Tj1 = (Asrryj — Gigari)OTi
= (Aiery; — dijart)V; Ort + (Airy; — 6i5ak1)Vjs Okls

+(Ai(kl)j - (5ijakl)’}/j(pq) aklpq + (Ai(kl)j — 5ijakl)7j(pqr) 6klpqr +.... (7)

Relations (5) hold if the symmetrized coefficients of Ok, Okis, Okipg, Okipgrs - - - in (7) vanish:

(Airryj — dijart)v; = 0;
(1/3)[(Asry; — digart)vis + (Airs); — Oigars) Vit + (Ais); — Oijaus)vjk] = 0; (8)
(1/6)[(Aitky; — bigar)Vi(pq) + (Aitkp)j — 0ijarp)Vitiq) + (Aitka)s — GijOka)Vi(ip)
+ (Aiap)j = 0igap)Vitkg) + (Aitigi — 065 @1a) Vitkp) + (Aitpa)i — Fipa) Vikny] = 0; (9)
(1/10)[(Aiky; — 0ijari)Vi(pagr) + (Aikp)s — Gijakp)Viagr) + (Aitkg)s — 0ijkq)Vj(ipr)
+ (Aitkr)j = Gikr)Vipa) + (Aiap)j — 013 @) Vithar) + (Aiig)s — 0i5@1q)Vj(kpr)

+ (Ai(iryj = 0ij @) Vj(kpa) + (Aipa)j — 0iipa) Vikir) + (Aipr)i = Gigapr)Vikiq) + (Ai(gryj — 0ij@qr)Vikip)) = 0, -(10)
Setting the free indices in (8)—(10) equal to 1, 2, and 3, we obtain the corresponding system of equations for
unknowns A;(xy; — 0ijkts Yiss Vj(pa)» Vilpar): - - - - Systems of the form (8), (9) were considered in [6, 8].

It is obvious that for the operator (2), ¢;1 = 0; is an eigenvector and determines purely longitudinal wave [3]
for any direction of the wave normal. In [4-6, 9], anisotropic materials were found that transmit purely longitudinal
waves for any direction of the wave normal. Given the propagation direction of transverse waves, one can completely
solve the Christoffel equation [3]. In [5, 6, 9], purely transverse waves were obtained:

tj2 = €jmsCm asv th =Cj Okk — Cm am.j~ (11)

Here €, is a Levi-Civita antisymmetric tensor and ¢; is a nonzero vector. For t; in (11), we obtain the coefficients
Vjs = €jmsCm, and the elastic-constant tensor A;y;; of a transversely isotropic material with the rotation axis c;
satisfies Egs. (8). If ¢; = (0,0, 1), then t;5 = (—02,01,0) is a purely transverse wave that for any direction of the
wave normal ny (9)) can travel in a transversely isotropic material [8] with the rotation axis xs; the phase velocity
in this case is pv? = (A1 — A21)(n? +n3)/2 + Aun3/2. Here A;; is the elastic-modulus matrix that corresponds to
the tensor A;jx. Obviously, the purely transverse waves (11) are also eigenvectors for the operator (2) in the case
of an isotropic material [8].

We find all transverse waves of the form t;5 = a;jx Ojx = a;(jr) Ok OF tia = aijr1 Ok = aijk1) Ojki, Where
aijk = Gi(jk) and a;jr = a(jrr) are tensors symmetric in the last two and three indices, respectively. These
vectors are orthogonal to t;; = 0, i.e., the equalities t;1tio = aiji Oijk = a(ijr) Oijr = 0, and titio = aijp Oijrl
= a(ijr) Oijie = 0, should hold, from which it follows that a(;;r) = 0 and a(;;x) = 0.

In a similar way as was done in [10], the tensors a;jx and a;;5; can be decomposed into invariant parts that
correspond to the irreducible linear representations of the orthogonal group of coordinate transformations:

Qijk = ik = L+ ciop + (eijuHu + e i) /2 + S, 12)
CSI)c = a19:0jk + a2(9;0ki + grdji) /2, CE?;)C = b1hidji + ba(hjoki + hydji)/2;
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Qijkl = Qiikt) = a0;(;0kty + Dijer + Nijkt + gmEmi(jOkt) + dijkt + €mi(i Skiym
= a(0i;0k + dir01j + 0:105%) /3 + Dijri + Nijki + 9m(EmijOrt + Emindi; + Emitdjx)/3 + dijri
+ (€mij Skim + €EmikSijm + €mitSjem) /3, (13)
Dijii = a1(H;j0k + Hi01j + Hidjr) + oo(Hjrdy + Hiidji + Hijog) /3,

dijrt = B1(hijopr + hixdij + hadjn) + B2 (hjrdi + hridji 4 hijori)/3.

Here (a1, a2), (b1,b2) and (a1, a2), (61, 32) are independent pairs of arbitrary real numbers, a is a constant, g; and
h; are vectors, H;; = Hj and h;; = h(ij) are deviators: H;; = 0 and hy; = 0, Sy = S(ijk) is a septor (a symmetric
traceless tensor of rank three), and Nyjp = N(;;ri) is a nonor (symmetric traceless tensor of rank four). The free
parameters a;, b;, oy, and §; can be chosen such that all parts in (12) and (13) are orthogonal to one another. All
quantities on the right sides of (12) and (13) can be uniquely expressed in terms of the tensors a;(jx) and a;(;k)-
Conversely, these tensors can be specified by formulas (12) and (13).

The tensors cgjl,l and cg,)c

G_L(w _Lw) a_\/gw. b_i(w _Lw> b_\/gw
1 \/3 11 \/g 21 | 2 5 21, 1 \/g 12 \/5 22 | 2 5 22

Here w;; is an arbitrary orthogonal 2 x 2 matrix of the second order: wjpw;q = dpg. The vectors, deviator, and
septor on the right side of (12) are uniquely determined by the tensor a;;x [2]:

o (bl -+ 2b2)aikk — (3b1 + bz)assi

! 5(&1[)2 — azbl) ’

in (12) are normalized and orthogonal if [2]

(Ba1 + az)assi — (a1 + 2a2)akk (14)

hi = )
5((11[)2 — agbl)

a1b2 — a2b1 75 O;

Hix = (aijreiji + aijicijn)/3 = 2a51€0i5/3,  Sijk = a(ijry — (a1 + a2)gi05x) — (b1 + ba)hdjp).
If the vector parts in (12) are orthogonal, instead of (14) we obtain

a10ikk + 02055 biaikr + b2ass;

9i = R h; = .
(V3ay + az/v/3)? 4 5a3/3 (V/3b1 + b2 /V/3)% + 5b3/3
Setting a3 = 1/3, as = 2/3, by = 2/3, and by = —2/3, from (12), we obtain the decomposition [11]
@ijie = (9i0jk + 950k + 905:)/3 + Sijk + (2hibj6 — hjdri — hidji)/3 + (eijiHu + i Hyj) /2 (15)

into symmetric and nonsymmetric parts.
For transverse waves, the symmetric part in (15) is a(;jx) = 0, i.e., the tensor a;j; becomes

aiji = (2hi0j5 — hjdri — hidji) /3 + (eijiHu + i Hyj) /2.

From this, we obtain the transverse wave (eigenvector)

tjo = ajsk Osk = 2(hjOkk, — hiy Okj) /3 + €551 Hik Osk = ¢j Okt — Ck Okj + €551 Hik Osis,

(16)
¢; =2h;/3
and the third eigenvector
i3 = €jmn Omtn2 = €jmnCn Omss + Hip O1p; — Hjp Opss-
One can easily verify that the matrix
T = [0}, ¢ Ok — Cm Omj + €js1Hip Osp, €jmnCn Omss + Hip Opj — Hjp Opss) (17)

and the operator (2) satisfy relation (3) and D1 = (A + 2u) Oxx — pOsa and Dy = D3 = pdgx — pOss. For a
nonzero deviator Hyy, the displacement vectors of the transverse waves t;2 and t;3 are second- and third-degree
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homogeneous polynomials of the wave normal ny (9y). Taking into account (17) and using formulas (4), we obtain
a new representation [2] of the solution of the Lamé equation for an isotropic material.
We now consider the tensor a;jxi = a;(jx)- A decomposition of the form (13) can be obtained using the

transformation

@ik = agryi = (ki + akigi + aijri) /3.
We find the projectors

Pijkt = Qijir + B(ajri + arji + aijri)/3. (18)
Since the double action of the projector yields a projector, the coefficients in (18) satisfy the equations

302 + % = 3a, 6o + 23% = 30,

whose solutions are (1, 0), (1/4, 3/4), and (3/4, —3/4). In this case, we obtain the following projectors: pg,)d

. . . . 3
= (@ijr + ajrii +aryji +ajri) /4 = agjry) (symmetrization over all indices) and pl(j,)gl = (3aijmi — Qjk1i — Gkiji — Qijki) /4

= Gijki — Q(ijk1) (nonsymmetric part). These projectors are orthogonal pgl)dpg,)d = 0 and their sum is equal to the
identical projector pg;,)cl = Qyjkl-
From (13), we find the convolution of the tensors
Dijridijr = [1501 81 + 2(c1 B2 + ) + Sz f2/3] Hijhij (19)
and the squared norms of the tensors

Dijleijkl = (1504% + 4o + 5(1%/3)Hin,’j,

dijridijin = (1565 + 46152 + 503 /3)hijhij. 20)
The tensors in (19) and (20) are orthogonal and normalized provided that
1502 + doyan 4+ 502 /3 = (V15 a1 4 200 /V15)2 + (VT/5ag)? =1,
1567 + 46102 + 503 /3 = (V1561 +262/V15)* + (VT/562)* = 1, (21)
150181 + 2(1 B2 + o) + 5azfa /3 = (V1501 + 202/ V15) (V156 + 282/V15) + /7/5 aa/T/5 B2 = 0.
Relations (21) imply that
V151 + 200/V15 V1581 +262/V15
[ V7/5as 7/5 B2 ] o
is an arbitrary orthogonal 2 x 2 matrix: w;pw;q = dpq. Moreover,
1 1 2 )
alzﬁ(ﬁwn—mwzl} azz\/;wm;
(22)

61:%<%w12_3iﬁw22)7 ﬁz—\/éwm

and D;j;; and d;j; are normalized and orthogonal tensors.
The constant, vector, deviators, septor, and nonor on the right side of (13) are uniquely determined by the
tensor ki = a;(jk1):

(581 +262/3)pi; — (261 + 502/3)qi;
T(o2f1 — a1 52) ’

(50&1 + 2&2/3)}71‘3' + (20[1 + 50&2/3)(]1‘]‘
T(azf — a1 2) ’

a = ikk/5, Gs = 3€5ijQijii/10; H;; =

(23)
hij = —

asfi —a1f2 #0,  Pij = Gssij — Qsski0ij /3, Gij = (Qijrk + Gjink)/2 — asskrdij/3;
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Skis = 3(Aij(ki€s)ij — O(ki€s)ijQijpp/D)/4 = [EsijQijht + EkijQijis + €1ij@ijsk — (€sijOrt + EijOis + €1ijOsk)Aijpp/D] /4,

Nijr = a(ijity — a0i(j0r1) — (31 + o) Hi0ky — (381 + B2)hijOry-
For the parameters (22), the deviators (23) become

H;; = w[_mW12pij + (2w12/VT + V3 wza)qij/ V5],

hij = w[\/ 5/7W11pij - (20‘)11/\[7‘1‘ \/§W21)q1‘j/\/g], w = |wij| = wiiWog — wWoiwig = £1.
For oy =1/6, ag =1/2, 1 = 1/6, and Bz = —1/2, from (13) we obtain the decomposition [11]
Aijkl = @ik = a(0ij0k1 + 0ixl1j + 0i1djx)/3 + Nijui

+ (H;j0ki + Hirdj + Hidji + Hjidii + Hpdji + Hijoki) /6 + gm(EmijOr + Emindij + mitdjn)/3

+ (hijOt + hirdij + R0k — hjkdis — hidji — hij0ki) /6 + (Emij Skim + EmikSijm + €mitSjkm)/3, (24)

whose parts are orthogonal to one another.
For the transverse waves, the symmetric part in (24) is a(;jx) = 0, i.e., the tensor a;j; has the form

@ikl = Gm (EmijOri + Emikdij + emirdjx)/3

+ (hijOrs + hirdi; + hitdjr — hjroi — hiidji — hijoki) /6 + (EmijSkim + EmikSijm + €mitSjem)/3- (25)
Taking into account (25), we obtain the transverse wave (eigenvector)
ti2 = Qijk10jkt = GmEmij Ojik + (ij Ojik — Pjk Oijk) /2 4 €mijSkim Ojki
and third eigenvector
tj3 = €jsn Ostn2 = Gm Omjkk — 95 Oppkk + €jsihip Ospiie /2 + Skim Okimj — Sjkt Okipp-
One can readily verify that the matrix

T = [0j, emjngm Onkk + (Njp Opss — lup Oipj) /2 + €jpm St Opkrs

Gm Omijkk — 95 Oppik + €jsthip Ospiic /2 + Skim Okims — Sjki Okipp) (26)

and the operator (2) satisfy relation (3) for the same values of D; and Dy = D3. For a nonzero septor Sy,
the displacement vectors of transverse waves are third- and fourth-degree homogeneous polynomials of the wave
normal ny (0;). Using formulas (4) and taking into account (26), one obtains one more representation of the
solution of the Lamé equations (2) for isotropic materials.

In [12, 13], a classification of the matrices L and T satisfying relation (3) is given and it is argued that degree
of the vectors t;, with respect to ng (0x) is not higher than the second. However, the vector ¢;3 in the matrix (17)
is of the third degree if Hj, # 0 and the vectors ¢ and t;3 in (26) are of the third and fourth degrees, respectively,
if Spkr # 0. It follows that the classification given in [12, 13] is incomplete. For Hj, = 0, relation (17) yields (11),
and relation (26) yields (17) for Sy = 0.

Let the coordinate system be the principal coordinate system for the deviator Hy in (16), i.e., Hyy = Ha;
= H32 = O, H11 = }I]_7 HQQ = HQ, H33 = }137 and Hl + H2 + H3 = 0. From (16), we obtain

ti2 = ¢1(O22 + 033) + (Hz — Hy) Oo3 — c3 013 — ¢2 012,
tag = c2(011 + O33) — 3 Oa3 + (H1 — H3) 013 — ¢1 O12, (27)

tsg = c3(011 + Oa2) — €2 Oa3 — ¢1 O13 + (Ha — Hy) Ora.
We consider the case ¢; = 0. Relation (27) becomes

tjz = (h1 Oa3, ho 013, h3 O12),

hy = H3 — Ho, hy = Hy — Hs, hs = Hy — Hy, hy +hs + hg = 0.



For the transverse wave (28), the coefficients v;(,q) are given by

Yiany =0, Ve =0, 733 =0,

(29)
Vj(23) = (h1/2a 0, 0>7 Yi(3) = (07 h2/2a 0)7 Vi(2) = <0a 0, h3/2)
In view of (29), system (9) reduces to the equations
(AII - a)hl + AEGhQ + A;5h3 =0,
(30)

A;Ghl + (A;z - CL)hQ + AZ4h3 =0, A;5h1 + Az4h2 + (A§3 — (l)hg =0.
Here ai1 = a2 = asz = a, as3 = a13 = a12 = 0, and A}, is the matrix corresponding to the tensor Ai(kl)j [14].
From (30) it follows that a is an eigenvalue and h; is an eigenvector of the symmetric matrix
AlL Ags Ass
Aij = A€6 Az, Al |- (31)
Az ALy Asz

Therefore, the matrix (31) can be written in terms of eigenvalues and eigenvectors:

A;-kj = alhﬂhjl + azhighjg + (lghighjg. (32)
Here h;, is an orthogonal matrix [15]:
ro1 —(1+¢) c—1 T
V3 VBl c-12+] it(c-12+e
1 2—-c —c
=175 VIl+e—12+¢ it(c—12+c (33)
1 2c—1 1
L V3 VBl (e—12+¢2 it(c—12+e |
Here c is an arbitrary real parameter, and, obviously, h1p + hop + hsp = 0 for p = 2, 3.
In this case, the total matrix A}, [14] has the form
Al
a A sym
a a  Aj
=10 0 0 Ay ’ (34)
0 0 0 0 A
0 0 0 0 0 A

where the diagonal elements are given by formulas (31)—(33) and the quantity a can take values as or asz. Taking
into account (34), we write the operator (1) as

Aj1011 + a(Oa2 + O53) — pOua AgO12 Ags5013
Li; = Age021 a1 + A39022 + a0s3 — pOys A}, 023 . (35)
Ag5531 A}4052 a(au + 822) + A§3833 — pOyq

One can easily verify that if Eqs. (30) are satisfied, the vector (28) is an eigenvector of the operator (35) and
Dy = a0y, — pdas. It is obvious that for any direction of the wave normal ny (9), the vector (28) is the displacement
vector of purely transverse wave and the phase velocity is given by pv? = agnpny = ag or pv? = asnpng = as,
depending on which column in (33) — h;o or h;3 — is chosen for h; in (28).

Using (34), we find (see [14]) the elastic-modulus matrix A;; [1] in Hooke’s law

A1
Afg —a  As sym
| Ass—a Aly—a Az
Aij = 0 0 0 2a ' (36)
0 0 0 0 2a
0 0 0 0 0 2a
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where a = ag or a = ag. It should be noted that the operator (35) [hence, the material (36)] does not admit the
purely longitudinal wave ¢;; = 0; for any direction of the wave normal. This is possible for an isotropic material
with the operator (2) [see formulas (17) and (26)] and for the anisotropic material considered in [4-6, 9].

Since the quantity a in (36) can take two values a = as or a = ag, two types of materials correspond to
matrix (36). Obviously, these are subclasses of orthotropic materials.

Using formulas (30)—(33), one can show that the vectors hy, (p = 1, 2, 3) in (33) are also eigenvectors for
the first quarter of the matrix (36). It follows that the materials (36) have eigenmoduli [15]

M =a1 —2as, X =2as, ANg=as+as, M=M= N\g=2ao (37)
or
A =a1—2a3, X =as+as, A3=A= A5 =g =2a3 (38)
and eigenstates [15]
—(1+¢) c—1

1
— 000
V3 B+ (c—1)2+c VI+(c—1)2+c2
1 2— -

— < < 000
V3 B+ (c—1)2+¢ 1+(c—1)2+c2
— 000
V3 B+ (c—1)2+c J1+(c—1)2+c
0 0 0 1 00
0 0 0 010
0 0 0 00 1]

From (39) it follows that among the eigenstates, there are a spherical tensor and five orthogonal deviators, three of
which are pure-shear tensors, i.e., deviators with zero determinants. For some values of ¢, however, there may be
four pure-shear tensors.

For the physically real materials (36), the eigenmoduli (37) and (38) should be positive. This implies the
following necessary and sufficient conditions of positive definiteness of the matrix (36)

a; — 2as > 0, as +asz > 0, as > 0;
(40)
a1 — 2a3 > 0, as + asz > 0, az > 0.
By virtue of the multiplicity of the eigenmoduli (37) and (38), materials of the form (36) can be written as

Aij = (M — A2)tatjn + (A3 — A2)tistyz + Aadij;
(41)
Aij = (M — As)tatji + (A2 — A3)tiatj2 + Asdij.
Here the eigenmoduli A1, A\, and A3 are given by formulas (37) and (38), and the eigenstates t;1, t;2, and t;3 by
formulas (39). In (41), the moduli Ay, Ay, and A3 are not ordered, i.e., they are numbered according to the notation
(37) and (38). Depending on the relations between the moduli A;, A2, and Az, materials of the form (41) can belong
to the classes {1,1,4}, {1,4,1}, and {4,1,1} [16].
Thus, the anisotropic materials (41), which transmit purely transverse waves (28) for any direction of the
wave normal ny, depend on four parameters: a, as, as, and c¢. The first three parameters satisfy inequalities (40),
and the parameter ¢, which determines the eigenstates (39), can take arbitrary real values. If ay = a3 in (37) and
(38), materials of the form (36) and (41) become isotropic.
The compliance matrix a;; inverse to A;; (41) is given by
11 11 1.
Qi = (Tl - Yz)tiltjl + ()\73 - 72>ti3tj3 + " dij;
1 1 1 1 1
ajj = <)\71 - )\:)tiltﬂ + <)\72 - 73)%2%‘2 + I 0ij-



Using (42), we find the engineering constants [17, 18] for these materials. The bulk modulus K is written as

1 1 1, 1o, 1., 1_, 1 _,
7o = Giikk = Lii tikrs = 7~ ti ~ i = tiigs T 1 2Li: 2t5;
7 = Giikk = Liipg Nors kk Nl + Ny lii22 + Ny liis3 + N, liizs + N, “liins + 1

1
e (43)

Here a;j1; is the compliance-coefficient tensor corresponding to the matrix a;;, t;511,. - -, \/iti_ﬂg are the tensors of
the eigenstates that correspond to the columns t;1, . . ., t;6 in (39), and A,qrs is the diagonal tensor of the eigenmoduli.
Since t;511 = 51-]-/\/?: and t;;11 = v/3 and the remaining eigenstates are deviators, i.e., tiipg = 0 and pg # 11, from
(37), (38), and (43) we obtain 3K = A\; = a1 — 2a2 or 3K = A\ = a1 — 2a3.

Let n; and m; (i = 1,2,3) be two orthogonal directions: n;n; = 1, m;m; = 1, and n;m; = 0. We introduce
the notation

n; (n17 7’L2, nSa \/inQn?n \/inln?n \/5711712),

m; = (m17 m2, m37 \fmgmg, V2mims, \[mlmg) (44)

nm; = (nymy, nama, nams, \@(nzm3 +n3my)/2, \/§(n1m3 +nzmy)/2, \/§(n1m2 +namy)/2),

e., (44) are vectors that correspond to the symmetric tensors n;n;, m;m;, and nm;). Young’s modulus Ej, in
the direction n; is written as

1
o = NN Akl MET = nzngtmpq B\ trirsngny =

2 2 2
o o N (tijrining)” + N (tijooming)” + )\73 (tijazning)

1 1
— 2(tij13nmj)2 + — 2(tij12ninj)2

1
* 5 2Mianiny)” + 3 Ao

A

1 o) (45)

1 2
% %

1 N 1 1 N
— (tiofy)? + — (tisfi)? + — (tiafy)® + ~
5

A2 A3 A4
9), (42), and (44), from (45) we obtain
i _ das —ag

E, 2as(a; —2as)

_ 1 _
= Nidijhy = 3= (timi)? +
1

Taking into account (37)—(3

a9 — asg 1

- s v tl i + -
2&2(&2 +a3) ( an )

tinfg)?
(tini)” + Sas

ay — as az —az [(c—1)n? —cnd +n3)?

B 3az (a1 — 2a2) * 2az(as +a3) 14 (c—1)2+¢2

)

1 4a3 — ax - \2
— = (tany
En 2a3(a1 - 2(13) ( 1 ) +

as — a2 - 1
2as3 (ag + a3) ( 2 Z) 2a3

__m-—a 630 [—(1+¢)n? + (2 = ¢)n3 + (2¢ — 1)n3)?
3as(a1 —2a3)  2as(az + as) 3[1+ (¢ —1)2 + ¢?] ’
For tension in the direction n;, Poisson’s ratio v, in the direction m; has the form

V’mn

T Ty GikI kT = T iMtijpg ~—— \ trirsMEMg
n pqrs
1 1 1
=+ (tijrimamy) (teiineng) + o™ (tijoamimy)(trizenen) + " (tijazmimy) (trissneni)
1 2 3
1 1
+ w 2(tijo3mimy) (trizznem) + o 2(tiji3mimy ) (trizneng) + o 2(tijiamim;) (triianemn)
5
- ~ 1 N - 1 5 5 1 ~ _
= 1iaijfy = = (tama) (1) + = (t2ma) (tj27) + +— (tisma) (t375)
1 2 3
1 5 5 1 5 N 1 - N
o (tiami) (tjang) + — (tisma) (tjs75) + — (ties) (tjeny).- (46)

A4 As A6
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With allowance for (37)—(39), (42), and (44), from (46) we obtain

Vmn o 4@2 —ai a2 — a3

En o 2@2(@1 — 2@2)

(tamg)(tjm;) + as(as + as) (tizmi)(tjan;)

 das—ay az—ag  [(c—1)mi —em3 4+ mj][(c — 1)nf — cn3 +nj]
 6ag(a; — 2as)  2asz(az + as) 1+ (c—1)2 + 2 ’
Vmn 4013 —ai ~ ~ asz — az ~ ~
= ————— (Lam;)(tjing) + o—F——— (tiami) (tj2n;
E, 2a3(a1—2a3)( 1) ( Jln])+2a3(a2+a3)( 21;) (t5275)
_ daz—ay az —az [—(1+c)m? + (2 —c)m3 + (2¢ — 1)m3][—(1 + ¢)n? + (2 — ¢)n3 + (2¢ — 1)nZ]
6as(a1 —2a3)  2as(az + as) 31+ (c—1)2+¢? '
The shear modulus i, in the plane determined by the normals n; and m; is given by
1
m = MM RIMEMY = NMjtijpg S UgtrsTsmy
nm pqrs
1 2 2 2
= 1 (tijranim;)” + —— (tijzanim;)” + +— (tijzsnim;)
A1 A2 A3
1 2, 1 2, 1 2
+ )\74 2(tij23nimj) =+ )\75 2(tij13nimj) =+ /\76 2(tij12nimj)
— — o, 1 —~\2 —\2
= nm;a;;nm; = — (tilnmi) + — (tignmi) + — (tignmi)
N Ao A3
1 o, 1, 1,
+ — (ti4nmi) + — (ti5nmi) + — (tignmi) . (47)
¥ A Ao
Taking into account (37)—(39), (42), and (44), from (47) we obtain
1 4a2—a1 — \2 ag — as —— \2 1 e~ N\ f—
= tiinm; )" + —— (tisnm; ) + — (nmy; ) (nm;
Ay 2a2(a1 — 2&2) ( ! ) 2&2(@2 + a3) ( 3 ) 2a9 ( )( )
1 n az —az  [(c—1)nimy — cnams + nzms)?
" day  2as(a + as) 14+ (c—1)2 4 ¢2 ’
1 4a3—a1 — \2 az — ag —— \2 1 e~ f—
= tiinm;)” + ———— (tionmy;)” + — (nmy)(nm;
4Mn’rn 20,3(&1 - 2&3) ( ! ) 2&3(&2 + CL3) ( ? ) 2@3 ( )( )
_ 1 L _OGs—a [~ (14 ¢)nimy + (2 — c)nama + (2¢ — 1)ngms)?
daz  2as(az + as) 31+ (c—1)2+¢? '

Thus, all engineering constants of materials (36), (41), and (42) are determined in general form.
Matrices (36) and (41) can be decomposed into invariant irreducible parts using the formulas given in [10].
In particular, the Lamé constants of the isotropic materials the closest to (41) are given by

A= (2Asskk — Askks)/15 = (5)\1 — 4)\2 — )\3)/15 = (5&1 — 19&2 — (13)/15,
2u = (3Askk:s — Asskk)/15 = (4)\2 =+ )\3)/5 = (9(12 =+ a3)/5;
A= (5)\1 — )\2 — 4)\3)/15 = (50,1 —ag — 19(13)/15, 2[1, = (AQ + 4)\3)/5 = ((12 + 9(13)/5
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Equations (30) admit one more solution if only one eigenvector in representation (32), say, h;s, satisfies the condition
his+ hos + hgz = 0. In this case, a = a3 in (36) and in the second formula (41) the eigenmoduli A; > 0, As > 0, and
A3 = A1 = A5 = Ag = 2a3 > 0 are independent quantities, and the eigenstates ¢;, have the following form [15]:

i 1 7[034’(14’61(63 — 1))01] C1 — 1 O 0 O ]
VI+3+ 0 +ales—1)2 VI+E++c(es — 1) [0+(cr —1)2+c3] 1+ (a -1+
C3 1-— (1+Cl(03 — 1))(61 — ].) —C1 O 0 O
VI+3+ 0 +ales—1)2 VI+E++c(es — 1) [0+(cr — 1)2+c3] 1+ (a -1+
tip_ 1 + 61(63 — ].) 03(61 — 1)+Cl 1 O 0 O
VI+3+ 0 +ales—1)2 VI+E++c(es — 1) [0+(cr — 1)2+c}] 1+ (a -1+
0 0 0 100
0 0 0 010
i 0 0 0 00 1]
(48)

Here ¢; and c3 are arbitrary real parameters. It follows that, in this case, the anisotropic material (41) transmitting
the purely transverse wave (28) for any direction of the wave normal ny depends on five parameters: A1, A2, as, ¢1,
and cj3.

Using (36), (41), and (48), one can show that the matrix (31) has an eigenvector h;3 = t;3 (i = 1,2,3) and
an eigenvalue az. The eigenvectors h;; and h;o in (32) have the structure of the vectors ¢;; and ;5 (i =1, 2, 3) in
(48) with a different parameter cs. There is no need to calculate the values of a; and as in (32). For ¢35 = 1, the
matrix (48) becomes the matrix (39).

Formulas (43) and (45)—(47) are also used to calculate the engineering constants in the case of (41) and (48).
The Lamé constants of the closest isotropic material are as follows:

A=\ — 2@3)(2tik11 1)+ (A2 — 2a3)(2tik22 —1)]/15,

= [(\ = 2a3) (3 — tfy11) + (A2 — 2a3) (3 — t7122)]/15 + 2a3.

In [4], the following anisotropic material transmitting purely transverse waves for any direction of the wave
normal is given as an example:

Agjkt = N6ij0ri + (00 + 6udjn) + HijOr + Hidij = ASpy + Hijop + Hyadij. (49)

Here Aﬁ;kl is the isotropic part and H;; = H(;;) is a deviator: H;; = 0. In the principal axes of the deviator Hj,
the tensor (49) corresponds to the elastic-modulus matrix A;;

A— Hj A+2u+2H, sym
- A— H, A—Hy  A+2u+2H;
Al]_ 0 0 0 2/14 ’ (50)
0 0 0 0 2u
0 0 0 0 0 2u

H, + Hy + Hs = 0.

The material (50) is a particular case of materials of the form (36), (41), and (48). For (50), the eigenmoduli
Ap, eigenstates t;,, and parameters c; and c3 are given by

AL =20+ [BA 4 /3(3\2 + 4H, H;)]/2 = 21 + A1,
)\2—2M+ 3)\ V3 3)\2+4HH /2—2,11—5‘)\2,

/\32/\4:)\5:)\6:2u;
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Hy + M\ /3 Hi+ X2/3 Hy—Hy . o 0'
\/HSHS + A2/3 \/HSHS + 22/3 V3H H,
Hy + /3 Hy + X2/3 H-Hy
VHH 433 JHH, + 333 V3L
tip = H3+;\1/3 H3+5\2/3 Hy, — H, 00 o ;
VHH, 483 \JHH 333 V3,
0 0 0 100
0 0 0 0 1
L 0 0 0 00 1|
(oMo Ha

== c3 = — .
Hy — Hy 3 H1+>\1/3

The matrix (50) is positive definite if the following necessary and sufficient conditions are satisfied:

2u(3\+2u) > 3(HY + H3 + H3),  u>0.

It is of interest to find, in addition to materials of the form (36), (41), other anisotropic materials that admit

purely transverse waves, for example, when the wave displacement vector contains the septor Sy, [see (25) and
(26)]. For this, it is necessary to solve system (10) and study the properties of the septor. This is a subject for
further study.
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